div2(X, e) -> i1(X)
i1(div2(X, Y)) -> div2(Y, X)
div2(div2(X, Y), Z) -> div2(Y, div2(i1(X), Z))
↳ QTRS
↳ DependencyPairsProof
div2(X, e) -> i1(X)
i1(div2(X, Y)) -> div2(Y, X)
div2(div2(X, Y), Z) -> div2(Y, div2(i1(X), Z))
I1(div2(X, Y)) -> DIV2(Y, X)
DIV2(X, e) -> I1(X)
DIV2(div2(X, Y), Z) -> I1(X)
DIV2(div2(X, Y), Z) -> DIV2(i1(X), Z)
DIV2(div2(X, Y), Z) -> DIV2(Y, div2(i1(X), Z))
div2(X, e) -> i1(X)
i1(div2(X, Y)) -> div2(Y, X)
div2(div2(X, Y), Z) -> div2(Y, div2(i1(X), Z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
I1(div2(X, Y)) -> DIV2(Y, X)
DIV2(X, e) -> I1(X)
DIV2(div2(X, Y), Z) -> I1(X)
DIV2(div2(X, Y), Z) -> DIV2(i1(X), Z)
DIV2(div2(X, Y), Z) -> DIV2(Y, div2(i1(X), Z))
div2(X, e) -> i1(X)
i1(div2(X, Y)) -> div2(Y, X)
div2(div2(X, Y), Z) -> div2(Y, div2(i1(X), Z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
I1(div2(X, Y)) -> DIV2(Y, X)
Used ordering: Polynomial Order [17,21] with Interpretation:
DIV2(X, e) -> I1(X)
DIV2(div2(X, Y), Z) -> I1(X)
DIV2(div2(X, Y), Z) -> DIV2(i1(X), Z)
DIV2(div2(X, Y), Z) -> DIV2(Y, div2(i1(X), Z))
POL( e ) = 1
POL( i1(x1) ) = x1
POL( DIV2(x1, x2) ) = max{0, x1 + x2 - 1}
POL( I1(x1) ) = x1
POL( div2(x1, x2) ) = x1 + x2 + 1
div2(div2(X, Y), Z) -> div2(Y, div2(i1(X), Z))
div2(X, e) -> i1(X)
i1(div2(X, Y)) -> div2(Y, X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
DIV2(X, e) -> I1(X)
DIV2(div2(X, Y), Z) -> I1(X)
DIV2(div2(X, Y), Z) -> DIV2(Y, div2(i1(X), Z))
DIV2(div2(X, Y), Z) -> DIV2(i1(X), Z)
div2(X, e) -> i1(X)
i1(div2(X, Y)) -> div2(Y, X)
div2(div2(X, Y), Z) -> div2(Y, div2(i1(X), Z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
DIV2(div2(X, Y), Z) -> DIV2(i1(X), Z)
DIV2(div2(X, Y), Z) -> DIV2(Y, div2(i1(X), Z))
div2(X, e) -> i1(X)
i1(div2(X, Y)) -> div2(Y, X)
div2(div2(X, Y), Z) -> div2(Y, div2(i1(X), Z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DIV2(div2(X, Y), Z) -> DIV2(i1(X), Z)
DIV2(div2(X, Y), Z) -> DIV2(Y, div2(i1(X), Z))
POL( e ) = max{0, -1}
POL( i1(x1) ) = x1
POL( DIV2(x1, x2) ) = x1 + 1
POL( div2(x1, x2) ) = x1 + x2 + 1
div2(div2(X, Y), Z) -> div2(Y, div2(i1(X), Z))
div2(X, e) -> i1(X)
i1(div2(X, Y)) -> div2(Y, X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
div2(X, e) -> i1(X)
i1(div2(X, Y)) -> div2(Y, X)
div2(div2(X, Y), Z) -> div2(Y, div2(i1(X), Z))